Получите центральные точки ящиков в API обнаружения объектов Tensorflow в каждом кадре

Я новый детектор тензорного потока и тензорного потока api. После выполнения api учебника по обнаружению объекта tensorflow я смог запустить его.

Теперь я хочу получить центральные точки ящиков объектов обнаружения. Я приложил рабочий код.

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

import cv2
cap = cv2.VideoCapture(1)

sys.path.append("..")

from utils import label_map_util
from utils import visualization_utils as vis_util

MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'

PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'

PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')

NUM_CLASSES = 90

opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
    file_name = os.path.basename(file.name)
    if 'frozen_inference_graph.pb' in file_name:
        tar_file.extract(file, os.getcwd())

detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')


label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, 
max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

def load_image_into_numpy_array(image):
    (im_width, im_height) = image.size
    return np.array(image.getdata()).reshape(
        (im_height, im_width, 3)).astype(np.uint8)


PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 
'image{}.jpg'.format(i)) for i in range(1, 3) ]

IMAGE_SIZE = (12, 8)

with detection_graph.as_default():
    with tf.Session(graph=detection_graph) as sess:
        while True:
        ret, image_np = cap.read()

        image_np_expanded = np.expand_dims(image_np, axis=0)
        image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

        boxes = detection_graph.get_tensor_by_name('detection_boxes:0')

        scores = detection_graph.get_tensor_by_name('detection_scores:0')
        classes = detection_graph.get_tensor_by_name('detection_classes:0')
        num_detections = detection_graph.get_tensor_by_name('num_detections:0')

        (boxes, scores, classes, num_detections) = sess.run(
      [boxes, scores, classes, num_detections],
      feed_dict={image_tensor: image_np_expanded})
  # Visualization of the results of a detection.
        vis_util.visualize_boxes_and_labels_on_image_array(
        image_np,
        np.squeeze(boxes),
        np.squeeze(classes).astype(np.int32),
        np.squeeze(scores),
        category_index,
        use_normalized_coordinates=True,
        line_thickness=8)
  print(len(num_detections))
  cv2.imshow('object detection', cv2.resize(image_np, (640,480)))
  if cv2.waitKey(1) == 27:
        cv2.destroyAllWindows()
        break
cap.release()
print ("finished")

Может ли кто-нибудь показать мне способ получить только центр обнаруженных объектов. Любая помощь может быть большой

Большое спасибо!!

python-3.x,tensorflow,object-detection,object-detection-api,

0

Ответов: 0

Получите центральные точки ящиков в API обнаружения объектов Tensorflow в каждом кадре

Я новый детектор тензорного потока и тензорного потока api. После выполнения api учебника по обнаружению объекта tensorflow я смог запустить его.

Теперь я хочу получить центральные точки ящиков объектов обнаружения. Я приложил рабочий код.

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

import cv2
cap = cv2.VideoCapture(1)

sys.path.append("..")

from utils import label_map_util
from utils import visualization_utils as vis_util

MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'

PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'

PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')

NUM_CLASSES = 90

opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
    file_name = os.path.basename(file.name)
    if 'frozen_inference_graph.pb' in file_name:
        tar_file.extract(file, os.getcwd())

detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')


label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, 
max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

def load_image_into_numpy_array(image):
    (im_width, im_height) = image.size
    return np.array(image.getdata()).reshape(
        (im_height, im_width, 3)).astype(np.uint8)


PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 
'image{}.jpg'.format(i)) for i in range(1, 3) ]

IMAGE_SIZE = (12, 8)

with detection_graph.as_default():
    with tf.Session(graph=detection_graph) as sess:
        while True:
        ret, image_np = cap.read()

        image_np_expanded = np.expand_dims(image_np, axis=0)
        image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

        boxes = detection_graph.get_tensor_by_name('detection_boxes:0')

        scores = detection_graph.get_tensor_by_name('detection_scores:0')
        classes = detection_graph.get_tensor_by_name('detection_classes:0')
        num_detections = detection_graph.get_tensor_by_name('num_detections:0')

        (boxes, scores, classes, num_detections) = sess.run(
      [boxes, scores, classes, num_detections],
      feed_dict={image_tensor: image_np_expanded})
  # Visualization of the results of a detection.
        vis_util.visualize_boxes_and_labels_on_image_array(
        image_np,
        np.squeeze(boxes),
        np.squeeze(classes).astype(np.int32),
        np.squeeze(scores),
        category_index,
        use_normalized_coordinates=True,
        line_thickness=8)
  print(len(num_detections))
  cv2.imshow('object detection', cv2.resize(image_np, (640,480)))
  if cv2.waitKey(1) == 27:
        cv2.destroyAllWindows()
        break
cap.release()
print ("finished")

Может ли кто-нибудь показать мне способ получить только центр обнаруженных объектов. Любая помощь может быть большой

Большое спасибо!!

00Python-3.х, tensorflow, объектно-обнаружение, объектно-детектирование-апи,
Похожие вопросы
Яндекс.Метрика